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ABSTRACT

33545 OVFK

Characteristics of waves in a two-component cold plasma are reviewed.
Using the Clemmcw-Mullaly-Allis diagram, the topological types of the
wave-normal surfaces are shown. A consistent system of labeling the modes,
initially given by Allis, is explained. Reversal in the polarization in
the electric field is examined, and all the modes in which the reversal
occurs are specified. There is no polarization reversal in ULF to VLF
waves in the magnetosphere. The lower hybrid resonance frequency in the
magnetosphere is discussed.

The equations of motion for an electromagnetic ray are derived.
Defining the action for the ray in analogy with that for a particle in
classical mechanics, the principle of least action is proved. It is shown
that if the dispersion relation is homogeneous in the wave vector and the
frequency, the principle of least action implies the principle of least
time, i.e., Fermat's principle. When the principle of least time holds,
as is the case with Alfvén compressional waves, the trajectory of a ray
can be determined from a variational equation, from which the problem can
be formulated in Hamiltonian form. For the axially symmetric case, the
generalized momentum conjugate to the azimuthal coordinate is a constant
of moticn. Using this relation, "allowed" and "forbidden' regions are
defined, when a set of initial conditions for the ray is given. This
method is applied to a model magnetosphere with a dipole magnetic field.
It is shown that the accessibility of hydromagnetic rays originating from

the boundary of the magnetosphere to the earth is greatly limited. For a
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distorted magnetosphere the canonical equations for a hydromagnetic ray
are integrated by a numerical method. Typical trajectories in the
equatorial plane are shown, and the effects of the deformation of 4the

dipole field on the ray trajectories are discussed.




1. Introduction

Hydromagnetic waves can be derived by a low-frequency approximation in
a general scheme of treating plasma waves. For a complete understanding of
the characteristics of hydromagnetic waves it is desirable to review plasma
waves in general for the entire range of frequency and for all possible
values of plasma parameters.

Clemmow and Mullaly (1954) presented a comprehensive study of the
dependence of the phase refractive index n, derived by the Appleton-Hartree
approximation, on the angle O which the direction of phase propagation makes
with that of the magnetic field. These authors developed a systematic
method of investigating the topological genera of the (n,0) surface. Allis
(1959), and Allis, Buchsbaum, and Bers (1963) modified the scheme by using
the wave-normal surface which is obtained by inverting the (n,8) surface
about the origin. Stix (1962) has given an excellent summary of the wave-
normal surface topology for waves in a cold plasma. In Sections 2.1 to 2.9
we will follow Stix's representation.

Stix (1962) called a diagram showing topological genera of the wave-
normal surfaces for various regions in plasma parameter space the "Clemmow-
Mullaly-Allis diagram'", or, in short, the 'CMA diagram'. The CMA diagram
for an idealized two-component cold plasma is presented in Section 2.4, and
the characteristics of modes for different regions in plasma parameter
space are reviewed. The labeling of modes by the sense of polarization,
i.e., "right-handed" or '"left-handed'", for the propagation parallel to the
magnetic field, or by "ordinary' or 'extraordinary'" mode according as the

refractive index for the propagation perpendicular to the magnetic field is



independent or dependent on the magnetic field is explained using the
CMA diagram,

In Section 2.6 the wave-normal surface topology in those regions in
the CMA diagram that are relevant to ULF and VLF waves in the magnetosphere
is studied.

Reversal of the polarization in the electric field that may occur for
@ not equal to 0 is examined in detail (Section 2.7), and the lower hybrid
resonance frequency in the magnetosphere is presented (Section 2.8).

In Sections 3.1 to 3.3 geometrical electromagnetics, or ray theory,
is formulated, and in Sections 3.4 to 3.8 the theory is applied to the
propagation of hydromagnetic waves in the magnetosphere.

Analogy between the Hamiltonian form of classical mechanics and
geometrical electromagnetics is demonstrated (Sections 3.2, 3.3, 3.4), and
validity of Fermat's principle in geometrical electromagnetics is examined
(Section 3.3). The action is defined for a ray, and the principle of least
action is established. It is then shown that if the dispersion relation
is homogeneous in R and w, the principle of least action implies the
principle of least time, i.e., Fermat's principle. This is the same result
as that obtained by Weinberg (1962) by the eikonal theory.

By formulating the ray theory in Hamiltonian form it is shown
(Section 3.5) that when the magnetic field and the plasma are axially
symmetric, and when the wave-normal surface is spherical, the generalized
momentum conjugate to the azimuthal coordinate is a constant of motion.

Applying this result to the propagation of hydromagnetic waves in a dipole
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model magnetosphere (Section 3.5), we will define, for a set of initial
conditions of a ray, "forbidden'" and "allowed" regions for the ray in the
same manner as Stormer (1953) did for a charged particle moving in a

dipole magnetic field. It will be shown that because of the Alfvén velocity
maximum at an altitude of several thousand kilometers above ground the
accessibility of hydromagnetic rays generated in the outer regions of the
magnetosphere to the immediate vicinity of the earth is very limited.

When the magnetic field is not axially symmetric, the canonical
equations must be integrated. 1In Section 3.8 we will present examples of
hydromagnetic ray trajectories computed by numerical method for a model
magnetosphere that takes into account the distortion of the dipole field by
solar wind. Trajectories in the equatorial plane alone are presented in

Section 3.8; more detailed discussions will be given in a separate paper.

2. Propagation of hydromagnetic waves
2.1, The dispersion relation

The dispersion relation for waves in a cold plasma in a uniform
magnetic field has been given by Zstrﬁm (1950), Sitenko and Stepanov (1957)
and Allis (1959). Here we only outline the derivation of the dispersion
relation; for the details, see, e.g., Stix (1962).

We assume that in the unperturbed state the magnetic field iz and the
plasma are static and uniform, and we take--]-s)o and the quantities character-
izing the plasma to be zero-order quantities. The perturbation<§ in the

—)
magnetic field, the electric field E, the current and the particle velocities
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are considered to be first-order variables, and the relevant equations are

all linearized by ignoring second- and higher-order terms. The first-order
-

variables are assumed to change as exp i (k-r -wt).

Considering the displacement current to be the sum of that in vacuum
and the plasma current, and by Fourier analysis the electric displacement
-l
D can be expressed in the form

2 oS> o
D=K - E
-
thus defining the dielectric tensor K.
—’
The expression for D and Maxwell's equations yield the following

dispersion relation in terms of the refractive index n:
An® -Bn2+C=0 (1)

where
2 e + P cos29 \

B = RL sin@ + PS (1 + coszg)

A =S sin

C = PRL

Ss=% R+ L)

L 2, 2

R=1 Ekj (TTk/a) )Y/ (1 +ék_(7_k/w) (2)
L=1- 2 THw®/a -0, /w)

P=1- z_’.ﬂi/wz

ﬂi = 41Tnk qi/ m

I

qu| Bo/(mkc)
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Here the subscript k refers to the particle of type k whose mass and charge
are m and Q> respectively, and ¢ is the velocity of light;TT'k and.fzk are
the plasma frequency and the cyclotron frequency for the k-th constituent;

€ merely specifies the sign of the charge.

2.2. The wave-normal surface

When all the plasma parameters and the frequency # are specified, n is a
function of 8, the angle between the static magnetic field'g; and the wave
vector -12 Denoting the unit vector in the direction of -k) by-71\:, ~;1\-:./n gives the
phase velocity, measured in units of c, in the direction of phase propagation.

We define the wave-normal surface by revolving about the direction of
the magnetic field'g; the locus of the tip of the vector?gkn when O is
changed from O to Y7 ; since the magnetic field and the plasma are assumed to
be uniform, at each point in space the wave-nocrmal surface is axially
symmetric about the direction of the magnretic field. Thus the topological
nature of the wave-normal surface is determized by the dependence of n on .

From the dependence of the ccefficients A and B in (1) on O as indicated
in (2) it is obvious that the wave-normal s.rface is symmetric with respect
to the plane through the crigin and normal to the magnetic field; namely,
n (8 =n (T7 - 9).

The solutions of (1) are

=
1l

(B + F)/(24) (3)
where

RL - PS)2 sin%0 + PZ R - 1) cos?e

vrf
I
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There are two branches in nz,and for real values of 8, n is either pure
real or pure imaginary.

The solutions for n? for propagation at 8 = 0 (parallel to the
magnetic field) and @ = % T (perpendicular to the magnetic field) reduce
to the following simple expressions.

For 6 = 0,
n? = R (4)

n- =1 (5)

n? = RL/S (6)

n2 =p (7

It can be shown that for @ = 0, the polarization of the electric
field for the branch with n? = R is circular and right-handed and that
for the branch n? = L also circular but left-handed.

For 8 = ¥ , the phase velocity for the branch with n? given by (6)
depends on the magnetic field, whereas that for the branch represented by
(7) is independent of the magnetic field.

These characteristics at @€ = C and 8 = ¥T will be used later for
labeling the modes.

To study the shape of the wave-normal surface it is important to

2 ¢vosses 0 from

. 2 e s . . .
know where n“ becomes 0 or infinity. For instance, if n
positive to negative, then n becomes imaginary and hence the wave becomes

evanescent.




Equation (1) shows that n2 = 0 is a solution only if C = 0,

namely, if

P=0,0orR=0, orL

]
o

(8)

Then the phase velocity is infinite.

2

The other case, n“ = 00 occurs when A = 0; from (2) we see that this

happens when @ satisfies the relation
25 -
tan“e = - P/S 9

Thus, if P and S are of opposite sign, then at @ satisfying (9) and also

at M- o, n? is infinite and the phase velocity is zero. When this

2 is zero at no other real 8. At 0 = 0, n2 ispo when S =+ 00,

and at @ = 317, n? is oo when S = 0.

happens, n

A circumstance in which n2 = 0 is called a cutoff and that in which
n2 = p0 a resonance (Allis, 1959). Allis calls the resonances at 8 = 0
and @ = ¥ the principal resonances.

From (4) and (5) we see that at @ = 0, n= + oo, vhen R = + 00, or
L=+0o . The definitions in (2) show that the case R = + 00 corresponds
to electron cyclotron resonance and the case L = + 00 to ion cyclotron
resonance. Indeed, the polarization of the electric field in each case can
be shown to be in the same direction as that of gyration of the respective
particle.

The resonance at © = 3T , corresponding to S = 0, is called the

hybrid resonance; there are two branches in the solution to S = 0, and

according to the frequency, the two resonances are called the upper and




the lower hybrid resonances. The lower hybrid resonance will be discussed
in Section 2.8.

In the limit 8 0 and P—> 0, a resonance may or may not result,
depending upon the path of approach to this double limit (Stix, 1962).

The topological characteristics of the wave-normal surfaces can be

2

classified into three categories. If n“ is positive for all real values of

0, the wave-normal surface is topologically equivalent to a sphere.

As we have seen, if P and S are of opposite sign, there is a resonance

at 0 satisfying (9). 1In this case, if n2

res is positive for 0¢ 0K ©

res?

and for 1T - 6 < 0 £ T and negative for Qres< LT -9

res S the wave-

res’
normal surface is equivalent to a dumbbell-shaped lemniscoid. If the sign

2

of n® in these regions is reversed, the wave-normal surface is equivalent

to a wheel-shaped lemniscoid.

2.3. Plasma parameter space

To determine the wave-normal surfaces for the two branches of u?
certain parameters of the plasma must be specified. Equations (1) and
(2) indicate that the wave-normal surfaces are uniquely determined when
the ratios TTk/LU and\fzk/u)(and €) are specified for all k. Thus, if
we imagine 2k-dimensional space with 2k mutually orthogonal axes

representing TTk/a) and flk/uJ , the wave-normal surfaces for the two

branches of n2

can be assigned to every point in this plasma parameter
space. However, if we specify fixed parameters, such as ratios of number

densities of different types of particles, and mass ratios, the minimum

number of coordinate axes required is reduced.
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To be specific in our representation we now limit ourselves to a
neutral cold plasma consisting of electrons and hydrogen ions. We denote
the plasma frequencies and the cyclotron frequencies for electrons and
ions by affixing subscript e or i to‘Trand.jz.

The quantities R, L, and P defined in (2) are then reduced to much

simpler expressions:

R=1-0/[Q+R5/w)Q -8 /w)] (10)

L=1-/[1-02,;/w)1+8,/w)] (11)

P=1-K (12)
where

&= (TT2+TT5/ w? (13)

Since S}e/ Jli = mi/me aju , is a fixed parameter, we see that two-
dimensional parameter space, i.e., a plane, suffices for our purpose.
Following Allis (1959) and Stix (1962) we take,SZé/LU 2 as ordinate and
X as abscissa; we are only concerned with the quadrant bounded by the

positive axes.

2.4, The Clemmow-Mullaly-Allis diagram
We now divide this plasma parameter plane into bounded areas by
curves representing the principal resonances and cutoffs. To make the

bounding curves reasonably separated from each other it is helpful to
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take the ion-to-electron mass ratio}L to be smaller than its actual value.
Following Allis and Stix, we takejL to be 4 for our illustrative purpose.

By examining the wave-normal surfaces in the manner described in the
preceding Section it can be shown that the topological type of each of the
wave-normal surfaces for the two branches remains the same throughout each
of the bounded areas.

The CMA diagram constructed in this way is shown in Figure 1. 1In each
of the bounded areas the topological types of the wave-normal surfaces for
the two branches are indicated. Wherever only one wave-normal surface is
drawn, the mode corresponding to the other branch is evanescent, and in the
area to the right of the curve L = 0 and below the horizontal line R = 00
both branches are evanescent.

The curve for RL - PS = 0 is drawn in with broken lines. This curve
represents neither cutoff nor resonance, but it proves to be useful in
labeling the modes.

As we have seen in Section 2.2 the polarization in the electric field
is either right-handed or left-handed at 6 = 0. The wave-normal surfaces
in Figure 1 are labeled R or L on top of each sketch according as the
polarization at @ = 0 is right-handed or left-handed, respectively.

For the propagation across the magnetic field, i.e., 6 = 5T , we
found that n? for one of the two branches depends on the magnetic field
and that n2 for the other branch is independent of the magnetic field.
Allis (1959) termed the mode with n? dependent on the magnetic field

"extraordinary'" mode and the mode with n2 independent on the magnetic field
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"ordinary' mode. We follow Allis' nomenclature, and wherever the
propagation in this direction (8 = %7 ) is possible, the symbol 0 or X
is attached to the right of each sketch of the wave-normal surface,
according as the mode is "ordinary" or "extraordinary".

This system of labeling the modes seems to be most systematic and
is recommended for the general use to eliminate confusion that has
existed in the past.

As we shall see in Section 2.9, for frequencies much less than the
ion cyclotron frequency the wave-normal surface for the mode labeled with

R and X in Figure 1 becomes a sphere, that is, n2

is independent of 8.
For this reason Kstr&m (1950) called this mode "ordinary" and the other
"extraordinary", and Astrdm's nomenclature has been used widely in the
literature dealing with hydromagnetic waves. However, this labeling is
not consistent with Allis' system. Since the spherical wave-normal surface
in question is merely an approximation valid only for frequencies welll
below the ion cyclotron frequency, Allis' system seems to be preferable.

As is evident in Figure 1, a right-handed (or left-handed) mode at
@ = 0 may be either an ordinary or extraordinary mode at © = %17 , and
hence labeling the modes with only one label R or L, or 0 or X is not
adequate.

It is also noted that the polarization in the electric field may
reverse its direction in some regions in the plasma parameter plane
(Stix, 1962). This problem will be discussed in detail in Section 2.7.

The two modes can be distinguished by still another labeling method.

The two modes are labeled '"fast" or "slow" by comparing the size of the
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wave-normal surfaces. There can be no crossing of the wave-normal surfaces
for the two branches so that the labeling with 'fast' or "slow'" mode can be
made unambiguously. Wherever only one branch is nonevanescent, it is
reasonable to assume that the wave-normal surfaces change continuously in the
plasma parameter plane and to label that mode consistently with the naming

of the corresponding mode in the neighboring bounded areas where a comparison

of two modes is possible.

2.5. A model magnetosphere

In Section 2.6 a CMA diagram for ULF and VLF waves in the magnetosphere
will be presented. The model magnetosphere to be used for the CMA diagram
and also for all the discussions of hydromagnetic waves in the later Sections
is described in this Section.

We approximate the earth's magnetic field by a dipole except in Section
3.8 where the distortion of the dipole field due to solar wind is taken into
account.

The electron density distribution in the magnetosphere adopted here is
based on the recent determination by Liemohn and Scarf (1964) using nose
whistlers. Among the electron density distributions which these authors
considered to give self-consistent results, we adopt the simplest distribution,
namely, the model in which the electron density is inversely proportional to
the distance from the earth's center. Their results apply to the region of
the magnetosphere approximately from 3 to 5 earth-radii. We assume that this

inverse cube law for the electron density holds in regions below and above




these altitudes. To be precise, we assume that the electron density
varies as No(a/r)3 on the equatorial plane from 15,000 km geocentric
distance to the boundary of the magnetosphere which is taken to be at
10a; here g is the radius of the earth and N, is taken to be 1.41 x 104
electrons/cm3 (Liemohn and Scarf, 1964).

For altitudes below the bottom limit of the above distribution
(15,000 km geocentric distance) we base our model on that given by
Dessler, Francis, and Parker (1960), but to ensure continuity of the
electron density we apply smoothing. In so doing the region below 15,000
km was divided into two regions and in each region the electron density
was expressed in a power series. At the boundary between the two regions
and at 15,000 km geocentric distance, the electron density and its first
derivative with respect to radial distance are made continuous. The
density was expressed analytically for the convenience for the numerical
calculations required later in the ray treatment.

Figure 2 shows the electron density distribution constructed in the
manner described above and used throughout this paper. The distribution
given in Figure 2 refers to that in the equatorial plane, but we assume
that the electron density is a function of radial distance alone.

Figure 3 shows the electron plasma frequency and the electron
cyclotron frequency as functions of geocentric distance. The former is
assumed to be spherically symmetric, but the latter, of course, varies

with latitude.
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2.6. The CMA diagram for ULF and VLF waves in the magnetosphere

Having obtained in Section 2.3 the whole view of the CMA diagram
for an idealized plasma in which the ion-to-electron mass ratio is taken
to be 4, we now ask what regions in the plasma parameter plane are
relevant to propagation of ULF and VLF waves in the magnetosphere. We
will now take the actual value for the hydrogen-ion-to-electron mass
ratio Mo

In Section 2.3 we took X andkgzz/cu 2 as coordinates, but the
conditions that are of interest to us now make it more convenient to
use 77;/40 as abscissa and gze/UJ as ordinate.

A CMA diagram for ULF and VLF with these cocrdinate axes is shown
in Figure 4. The diagram can be used in two ways. If the frequencyw is
specified, the change in the plasma parameters with distance from the
earth's center (for instance, on the equatovial plane) can be represented
by a curve along which the radial distance is marked.

Alternatively, if a position in the magnetosphere is specified, a
continuous change in the wave frequency at that position car be
represented by a continuous curve in the CMA diagram.

For the sake of convenience we take the former representation. In
Figure &4, curves are drawn for frequencies from 0.0l c/sec to 10 kc/sec.
Since the plasma parameter variations with radial distance are the same
for all frequencies, curves for different frequencies can be obtained
from one of them by merely displacing it parallel tc a fixed straight line.

Since the magnetic field varies with latitude, the curves drawn in
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Figure 4 for the equatorial plane will be changed at higher latitudes,
but the changes are only slight because of the logarithmic scale in
the diagram, and the general features which are discussed below will
not be altered appreciably.

First, we observe that for waves with frequencies below about
1 c/sec, two modes are possible. One has a wave-normal surface
topologically equivalent to a sphere; its electric field has right-handed
circular polarization at © = 0, and the mode is ''extraordinary" at 8 = %77;
this mode is the "fast' mode. The other mode, which is the "slow'" mode,
has a wave-normal surface topologically equivalent to a dumbbell-shaped
lemniscoid, and its electric field has left-handed circular polarization
at © = 0. 1In the hydromagnetic approximation the former mode corresponds
to Alfvén compressional wave and the latter to Alfvén shear wave. It is
the latter mode that Alfven (1942) originally derived by treating plasma
as a conducting fluid.

In the frequency range approximately from 1 c¢/sec to 100 c/sec, ion
cyclotron resonance takes place at some altitude, and above this altitude
only the fast mode can propagate. {(We are concerned here only with
altitudes above several hundred kilometers above ground level.)

For each frequency in the range from several tens cycles/sec to
several kilocycles/sec, the lower hybrid resonance (at @ = MW , and
S = 0) is encountered at a certain altitude, and above that altitude the
wave-normal surface is transformed to a dumbbell-shaped lemniscoid;

propagation across the magnetic field beccmes impossible. The mode
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prevailing at frequencies above the lower hybrid resonance frequency
is the '"whistler" mode.

As we go to still higher frequencies we reach electron cyclotron
resonance, and the whistler mode is destroyed. If we cross the cutoff
L = 0 from right to left in Figure 4, we have one or two modes, according
as the frequency is above or below the electron cyclotron resonance. In

the latter case the slow mode represents the whistler mode.

2.7. Polarization reversal
In this Section we examine polarization at 6 not equal to zero. In
Section 2.4 we already mentioned the possibility of reversal of polarization.
Stix (1962) showed that for one of the branches the polarization of the

electric field changes direction of rotation at © satisfying the relation
sing = P/S (14)

Clearly, for this reversal of polarization to take place at real O,

P and S must be of the same sign and IP/SI < 1. Even these conditions
are both satisfied, the reversal may occur in an evanescent branch. Thus
it is worthwhile examining the problem in detail.

From the conditicn that P and S are of the same sign we can eliminate
about one half of the bounded areas in the CMA diagram. By the second
condition, namely, that IP/SI € 1, part of the remaining areas are further
eliminated, In Figure 5, areas where polarization reversal cannot occur

are shaded; signs of P and S are indicated by a small symbol + or -. The
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coordinates in Pigure 5 are the same as in Figure 1, and the ion-to-
electron mass ratio M is again taken to be 4; this is just for schematical
representation, and our discussion in this Section applies to the case in
which./L is taken to be the actual ion-to-electron mass ratio. The
horizontal line at ﬂz_/u) 2 - qu corresponds to ,Q,f = wz, i.e., ion
cyclotron resonance. Another horizontal line at Qé/ w? ?/Uz -H+ 1 plays
an important role in the following discussions. This comes about from the
fact that P - S has the factor .,Q,zlw 2 . (Iu.2 -/4.+ 1) in the numerator.
For/u > 1, Juz - /A + 1 is less than /u.z and is greater than 1. It can be
shown that /1.2 - /4. + 1 is the ordinate (_Q,ﬁ/ w 2) for the intersection of
P=0and S = 0, and that the curve RL - PS = 0 intersects the.gzzltklz
axis at /44«2 —/M. + 1.

From Figure 5 it is already clear that the reversal can never occur in
the magnetosphere in waves with frequencies below the ion cyclotron frequency.

Next we examine in which branch the polarization reversal takes place,
if it does at all, without limiting ourselves to the conditions of our
immediate interest.

By examining the polarization of the electric field it can be shown
that if the polarization reversal occurs, then it does so in the branch
that comes from the positive sign in (3) when RL + PS - 252 is negative,
and in the branch ffom the negative sign in (3) when this quantity is
positive.

It is, therefore, instructive to locate the solution to the equation

RL + PS - 282 = 0 (15)
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The left-hand side of (15) can be written as follows:

RL+PS - 282 = - x2 (2 - kB2 - xH7? [« - {2 r‘z - (Lro)p+2} o
+ {rx‘* - @ Hop 3+ 3wl - +o)p + 1} x2
- f’“z {a-z2e)p?- @ -300p+1- 20 ] (16)

where X = Sle/u)

The expression on the right-hand side of (16) can also be written as

(R e I e (O T R E R ¢ Rl T DY JC LS
+op{e? - p?) &2 - 1)+ 2p(p- D}

Though the latter expression is convenient to determine & when x2 is
given, we will use (16) to obtain the solution to (15). From (16) we see
that x2 = 0 is a solution of (15), which, however, is of nc interest to us.
We now examine the solution of the equation that is obtained by
equating the content of the square brackets in (16) to zero. Since the
equation so obtained is cubic in x2, we can determine the number of real
roots by examining the discriminant. This method is helpful in locating
the solutions. |
For oKX >> U and x2 not very much greater in order of magnitude

than , x2 becomes independent of (X, and we have two positive roots:
P

x2=fx.2(1-2/f4.) or 2p
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thus, giving two positive roots for x

x=/4,(1-2//A.)% or (2/;.)%

Numerically, these are approximately 1835.50 and 60.64, respectively.

There are three positive real roots (x2 satisfying (15)) for
positive X less than 0.175. Between 0.175 and 5.835 there is only one
negative real root. For X greater than 5.835 there are two positive
real roots and one negative real root. (The numbers quoted are accurate
to + 0.005.)

The curves representing (15) are schematically shown in Figure 6;
the sign for RL + PS - 252 is also indicated for areas separated by the
curves.

We now combine the results in Figures 5 and 6. 1In so doing we
observe that the intersection of R =00 and L =0 1is at X= 2(1 - 1/F‘)< 2.
We see that all the unshaded areas in Figure 5 where the polarization
reversal can occur are in the regions where RL + PS - 282 is negative.

Thus the reversal occurs in the branch resulting from the plus sign in (3).

We reach the conclusion that there is no polarization reversal in
the nonevanescent modes to the right of the vertical line (X= 1, and
that for X less than 1 the polarization reversal occurs in the L-X mode
for (,u2< Qi and in the R-0 or R-X mode for ﬂf (1—1/'u,+ 1/{4.2)<w2< _Q_,z

The mode in which the polarization reversal occcurs are indicated in
Figure 7, which summarizes the discussions given in this Section.

We conclude that for ULF and VLF waves ir the magnetosphere the

polarization reversal at 6 satisfying (14) does not occur.
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2.8. The lower hybrid resonance

We see from (6) that for propagation across the magnetic field,
i.e., for 8 = ¥ , there is resonance at S = 0. As is indicated in
Figures 1 and 4, there are two such resonances, and the one at lower
frequency is called the lower hybrid resonance and the other at higher
frequency the upper hybrid resonance.

Approximate expressions for the two hybrid resonance frequencies
can be obtained by ignoring terms of order /L‘l compared with unity in
the dispersion relation for @ = 3 . Stix (1962) gives for the lower

hybrid resonance frequency Wiy
2 2 2
= ] + + 1 .
1wl =1/(QLE+TT0) 182, 82, (7)

and for the upper hybrid resonance frequency Wy

2 .2 2 18
aJUH 'fzé * 77—e (18

In the frequency range we are concerned here and for the plasma
parameters appropriate to the magnetosphere the lower hybrid resonance
frequency can be approximated to a good accuracy by the geometric mean

of the ion and electron cyclotron frequencies:

apy = (23 00° as)

A clear physical picture for this resonance was given by Auer,

Hurwitz, Jr., and Miller (1958).
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The lower hybrid resonance frequency in the magnetosphere at

different distances from the earth's center is given in Table 1.

Table 1. The lower hybrid resonance frequency fLH at various

distances from the center of the earth.

r fin
km c/sec
10,000 5,260
15,000 1,560
20,000 657
25,000 337
30,000 195
35,000 123
40,000 82
45,000 58
50,000 42
55,000 32
60,000 24

2.9. The hydromagnetic approximation

When the wave frequency w is well below the ion cyclotron frequency

Jli, the quantities R and L in (10) and (11) are simplified and both
2,

o 5 here

R and L can be approximated by 1 + K , where 6’= A'W‘P c2/ B

f =n; my + n, m, i.e., the plasma density. With these approximations
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for R and L the dielectric tensor defined in Section 2.1 becomes diagonal.
The component Ky c¢f the dielectric tensor perpendicular to the magnetic

field then takes the well-known form (Spitzer, 1956)

Kl_=l+(

1f X is large, as is the case with ULF waves in the magnetosphere,
P in (12) can be approximated by - X . Witk these approximations for
R, L, and P the dispersion relation is simplified and readily factored,

giving the following two modes. One of these modes gives
nf =1+ ¥ (20)

and the other

n? cos?e = 1 + Y (21)

In the first mode n2

is independent of 6. For this reason
Lstrém (1950) called this mode "ordinary' mode, and the second
"extraordinary' mode. However, a closer examination shows that the
first mode corresponds to the branch labeled R-X in Figure 4 and the

2 for the

second toc that labeled L. Hence the exact expression for n
first mode depends on the magnetic field for @ = 3T . The problem
of labeling the modes has already been discussed in Section 2.4.

By studying the ion velocity the mode corresponding to (20) can

be shown to represent compressional wave, and the other mode (21)

shear wave.
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From a comparison of phase velocity for these two modes one finds
that the compressional mode is the fast mode and that the shear mode is
the slow mode.

From the continuity of the wave-normal surface we see that the

Alfvén compressional mode (or the fast hydromagnetic mode) and the
whistler mode belong to the same family. The Alfvén shear mode (or the
slow hydromagnetic mode) disappears at the ion cyclotron frequency.
When B’>> 1 the phase velocities for the compressional and shear
i modes recude to VA and VA cos O, respectively, where VA = Bo/ ~[Z?f}7 s
} which is usually called the Alfvén velocity. The condition that 6'2>
1l is equivalent to the condition that VA/C L 1.
These approximations for the phase velocities can be readily

obtained by a fluid-dynamical treatment of plasma with infinite

conductivity and by neglecting displacement current.




- 2% -

3. Ray theory
3.1. Introduction
So far we have reviewed the wave modes in a cold plasma by studying
the wave-normal surfaces. The basis for the study was the dispersion re-
lation. We now investigate propagation of hydromagnetic waves from a
somewhat different angle by constructing a ray theory. As the plane wave
theory described in the preceding Sections has limitations in its appli-
cation, the ray theory developed in the following Sections is valid only
under certain conditions. However, just as the general discussions of
wave modes are useful in understanding the propagation of waves, the
theoretical study of the behavior of rays may be helpful in understanding
some of the electromagnetic phenomena occuring in the magnetosphere.
Although the theoretical discussions in Sections 3.2 and 3.3 are
of general nature, the theory is applied in Sections 3.4 to' 3.8 to pro-

pagation of hydromagnetic waves in the magnetosphere.

3.2. The equations of motion of a ray

The basis of the theory is that the ray propagates with the group
velocity. Hines (1951) and Auer, Hurwitz, Jr., and Miller (1958) have
shown that the constructive interference maximum of a wave packet moves
with the group velocity. We also assume that the mode in which the waves
constituting the wave packet propagate is the same throughout its
motion in the anisotropic medium. Coupling between different modes is

assumed not to take place.
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Denoting the position of a ray by ? and the group velocity by v, we
write the equation of motion for the ray as follows.

-
> _ =
r=v

g (22)

where the dot signifies differentiation with time t. The group velocity

Vé is given by

Tr’g =p2w/2k (23)

The wave frequency W and the wave vector i? are related by the disper-

sion relation which we write

- -
D(k,ew, r, t) =20 (24)

We introduce a parameter T along the path of the ray. Then, using
(23) and (24), the equation of motion (22) can be written in the following
form.

d¥/dT _ _ 2DAE (25)
dt/dT oD/ow

From our assumption D is constant along the trajectory, and hence we

have

2D . dk 3D dw , 2D .dY _ 2D dt

D= . . (26)
&D = 2R dTt 2w dT 2% 4T 2t dT

) =0

For (26) to hold for any T the content in the parentheses must be

zero. We group the four terms in the paretheses in (26) as follows:




D

( . € 2D d_?)+(an dw , 3D dt, _ (27)
ok dt © 2T dtT Pw dt 2t dt

I1f each of the two factors in (27) is zero, the required condition (26)
is satisfied. Equations (25) and (27) are satisfied by the following set

of equations:

d2/dT = 2D/dK (28)
dk/dT = - 3D/ 27 (29)
dt/dT = - 2D/ dw (30)
dw/dT = 23D/2 t (3D)

1f D is independent of time, the last equation (31) states that w is
conserved along the ray trajectory. The third equation (30) gives the rela-
tion between time t and parameter T.

The above set of equations clearly indicates an analogy between the
ray theory and classical mechanics. The wave vector ?’and the frequency w
of a ray play the roles of the momentum and the energy of a particle, respec-
tively. However, this analogy does not enable us to formulate the ray theory
in Hamiltonian form. This is because the motion of a ray corresponds to that
of a particle of zero mass, and hence it is expected that the Lagrangian for
the ray is identically zero. 1In the end of the following Section we will show
that the Lagrangian indeed vanishes.

However, when Fermat's principle is valid the problem can be formulated
in Hamiltonian form. Hence we now examine under what conditions Fermat's

principle is consistent with our formulation.
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3.3. Fermat's principle

Weinberg (1962) showed that when the eikonal is stationary, the principle
of least time, i.e., Fermat's principle, holds if the dispersion relation is
homogeneous in ?'andcu. In this Section we derive the same condition by pur-
suing the formulation in the preceding Section.

In classical mechanics the principle of least action holds when the
Hamiltonian is conserved. We limit ourselves to the case when the frequency
w is conserved along the path, that is, D is conserved along the path.

We first define the action A for the ray by the integral

2,
A =J k-r dt (32)
t1
where the dot means, as before, differentiation with t.

Next, we calculate the variation A A, where the A-variation differs
from the §-variation appearing in virtual displacement; in the latter, time
is kept unchanged, whereas in the former the process involves a change dt (see,

e.g., Goldstein, 1951). For any function f of ¥ and t, the A-variation of f

is

Af=d't(3f id_g)

Tt dT
=$f+ fat (33)
In particular,
AT =87+ Tat (34)
Applying the A -variation to (32) we have

t o - t

2 S 2
saa=| “5EDdr + K-Tat (35)

tl t
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The first integral can be calculated in the following way:

to . t2 v t2 .
g 5K.D dt:J 3§?dt+J k- 57 de
t2 55 t2 - t2
=J Skrdt-J ST+ B 57
tl tl t].
t » * hd t
2 2
=J (ST -K- §Ddt - k-rat
t1 t1

Here we used the fact that the order of the §- and dot-operation can be
interchanged, and partial integration was performed on the second integral
on the right-hand side of the first line. To obtain the last result we
used (34) and the condition that A?= 0 at the end points.

Thus (35) reduces to

Using (22), (23), (28), (29), and (30), the integrand can be transformed

as follows:

- (2D/2w)"Y (8K 3D + §F 2D)
2R 27

5
"]e
7~
on
2t
I

- (0w 8D

=0

Thus we have proved that
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Namely, in our system the principle of least action holds if the action is
defined by (32). Having proved this principle we go back to the expression

for & A given in (35). 1f

> 3

k-r = constant > O (36)
then (35) reduces to

A(t —t1)=0

2

which implies the principle of least time, or Fermat's principle. The

condition (36) can be rewritten as follows:
- (TE- 2D/ 3“12) /| ( 3D/ 3w ) = constant (37)

A sufficient condition for (37) to hold is that D is homogeneous in

X and w , because if D is homogeneous in X and w, i.e., if
D( ok, ww ) = o«OD(K, w)
Euler's homogeneity equation becomes
3D _ p =0 (38)

Thus the constant in (37) takes the value of w.

The homogeneity equation (38) can be transformed into the form

1=y

Vg-(” =1

which implies the equality of the group and phase velocities.
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It is pointed out here that the action (32) is the same as the
eikonal S in Weinberg's formulation, and that the principle of least action
derived here is equivalent to the principle of stationary S in Weinberg's
eikonal theory.

For the Alfveén compressional mode the dispersion relation is homogeneous
in'z and w , and hence Fermat's principle holds. As a matter of fact, for
this mode the group velocity is equal to the phase velocity. However, for
the shear mode the dispersion relation is not homogeneous in the components
of‘E, and thus Fermat's principle does not hold. As has been noted by Weinberg
(1962), the application of Fermat's principle by Francis, Green and Dessler
(1959) is justified.

In concluding this Section a remark is made on the Lagrangian. 1In

classical mechanics the Lagrangian L is related to the Hamiltonian by

g 3
where p is the momentum.

If we define the Lagrangian for the ray by

then from (36) our Lagrangian is identically zero, confirming our
expectation expressed in Section 3.2. Thus the ray theory cannot be

constructed in Hamiltonian form using the Lagrangian defined above.




3.4, A ray theory for modes with isotropic phase velocity
In this and the following Sections we discuss the case in which the
phase velocity is isotropic. We specifically study propagation of a hydro-

magnetic ray. For the Alfvén compressional mode the group velocity is the

same as the phase velocity. Hence we simply refer to these velocities by
the single term the Alfvén velocity.

Fermat's principle states that the motion of a ray from a point Pj

|
| )
) to another point P, is such that the variation of the line integral ds/V
b P
1
! for fixed Pl and P2 is zero, i.e.,
‘ P2
5J ds/V(r,0,4) = 0 (39)
Pl

where V(r,0,8) is the Alfvén velocity. We use a spherical coordinate
system (r,0,4) in this and following Sections; when we refer to the

magnetosphere the origin of the spherical coordinate system is taken to

coincide with the earth's center. In the preceding Sections © was the

-3
angle which k makes with the magnetic field, but in the rest of the paper
0 is the polar angle.

We write (39) in the form:

0 (40)

t

2 . N .

Sg (2 + r2 82 + 12 42 sin@) % dt
ty V(r,Q,d)

where t1 and t, are the times when the ray is at P; and P,, and where the

dot means differentiation with respect to time t.

Equation (40) is formally the same as the variation equation expressing
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Hamilton's principle for a system whose Lagrangian is equal to the integrand
in (40). Thus we take the integrand of (40) as the Lagrangian of our system,

and define the generalized momenta conjugate to r, ©, & by
pk=bL/Bak (k =1, 2, 3)

where it is understood that the subscript k refers to r, 9, é components
and that qy (k =1, 2, 3) represnets r, 6, &, respectively.

The Hamiltonian H of the system is

=}
1]

q, -L
o

V(r, o, 6) 2 [prz + pgzlr2 + péz/(rzsinZGﬂ -1

Then the canonical equations can readily be formed. Stegelmann and von

Kenschitzki (1964) proceeded to integrate'the canonical equations numerically.

3.5. Axially symmetric case: allowed and forbidden regions for a ray

It is obvious that if the Alfvén velocity is independent of &, the
Hamiltonian does not contain & explicity; thus, é is a cyclic coordinate.
It follows that the conjugate momentum py is a constant of motion. From

the definition of Py We immediately obtain the equation
(r? ¢ sin29) / V(r,0)2 = constant (4

This equation, of course, is the canonical equation for é with py constant.

®
Since ¢ = V dé/ds, where s is path length along the trajectory, (41) can

be written as follows:
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(R?/V) dé/ds = X (42)
where

R=r sin @ (43)
\ and where (X is a constant.

We define an angle ) by the equation
R dé/ds = sin }X, (44)

so that X is the angle between the tangent to the ray in the direction of
its motion and the meridian plane. As can be seen in (44) the sign of ) is
taken such that ) is positive when & increases as the ray advances. Figure
8 illustrates the angle x .

Using X , (42) reduces to
(R/V) sin x = (45)

For rays belonging to (X , (45) gives the angle X as a function of r and ©.
Since -1 ¢ sin)( ¢ 1, we have the relation

-1 ¢ XV/R £ 1 (46)

Thus, given the value of X, (46) defines the "allowed" region for the
rays belonging to X. Areas outside the allowed region are forbidden to these
rays.

The constant X can be taken as the initial condition specified by
Iy, 85, and X4

X = (Ro/Vy) sin X (47)
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where Ro and V, are the values of R and V at rqg, 64.

It should be noted that the angle X, does not specify the initial
direction of a ray completely, except in the equatorial plane. To specify
the initial direction of a ray completely one more angle is needed (Section
3.8); however, we only need X for the time being.

When the initial conditions rg, 6,, and X, are given, the allowed and

forbidden regions can be mapped out using (46) without integrating the equa-

tions of motion.

The problem is formally identical with that in Stormer's work on the
motion of a charged particle in a dipole magnetic field (Stdrmer, 1955). 1In
Stormer's problem also the Hamiltonian does not contain é explicitly.

The meaning of (44) becomes more explicit if we limit ourselves to rays
confined in the equatorial plane. The Alfvén velocity V is now a function of
r alone, and ) is the angle which the tangent to the ray trajectory makes with
the radial direction. Let ) be measured positively from the inward radial
direction toward the direction of increasing é (which is taken to be eastward)
and let X vary from -T to T ; thus rays with -127T<x<1/zTT are inbound and those
with l'X,{)‘/zn' are outbound, and whenx=_t%1T, a ray is tangent to the circle of

radius r.

The angle y at r is related to its initial value X, at the point source

at ry by

sin X = (ro/r) (V/V,) sin X,

If V(r) is a maximum at r = r, and is a monotonically decreasing function

cf r with increasing r, then for I, > t > rp, the inequality|X|>'Lx4 always
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holds. This simply implies the obvious result that the ray is bent away
from the region of high Alfvén velocity,

The Alfvén velocity is a maximum at several thousand kilometers altitude
and decreases both above and below this level (Dessler, 1958). The Alfvén
velocity increases again near the Fy peak. but we are not concerned here
with the propagation of hydromagnetic waves in the ionosphere. We only
consider the ray trajectories above 600 km altitude.

It is of interest to find the critical initial angle 75’c at which an
inbound ray from a point source at a great distance is reflected away from
the earth at the region (r = rm) of the Alfvén velocity maximum. This

critical initial angle can be determined by

|sin Xo,cl = (rp/ry)  (Vo/Vgp)

where V, is the value of V at ry.
For a rough estimate, taking ry = 60,000 km, rpy = 10.000 km, and Vg5 =

400 km/sec., V_ = 2,000 km/sec. we obtain {sin To,c = 1/30. and hence 'Xo

el
is about 1.9°. There are uncertainties in the distribution of Alfvén velocity
in the magnetosphere, but Xo c 1is not likely to be changed greatly as more

accurate information on the Alfvén velocity distribution becomes available.

3.6. A further remark on ray tracing in the equatorial plane
In Section 3.5, time t was used for the variable in the variation
equation. However, any one of the three coordinates can be used as the

variable in place of t.
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1f we choose é as the variable, and if we confine ourselves to the

equatorial plane, the integrand L in the variation equation reduces to

, 2

2.k
L(r, ') = (r + r9)2 /V(r)

where the prime represents differentiation with respect to 4.
Considering this function as the Lagrangian, Lagrange's equation of

motion is

This is the equation used by Francis, Green and Dessler (1959).
Denoting the momentum conjugate to r by p, the Hamiltonian for the

system is given by

where

P OL/ D'
It is understood that H is expressed as a function of r and p. Then

the Hamiltonian does not contain é explicitly. Thus the Hamiltonian is a

constant of motion. We immediately arrive at the equation:

v 2L L = constant

This is the equation which Francis, Green and Dessler (1959) derived
mathematically and used for their calculation of the transit time for
the ray, and which Dessler, Francis, and Parker (1960) used for their two

dimensional ray tracing.
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3.7. Hydromagnetic rays in the magnetosphere: axially symmetric case

Using the method described in Section 3.5, we will now investigate
the accessibility of hydromagnetic rays originating from the magnetospheric
boundary to the vicinity of the earth. We use the same model magnetosphere
as the one presented in Section 2.5; for the magnetic field we approximate
the geomagnetic field by a centered dipole.

As was shown in Section 3.5, when the position (r,,8,) of the point
source and the initial value of ) of the ray are specified, we can determine
the allowed and forbidden regions by (46) and (47).

We place the point source at the distance of 10 earth-radii from the earth's
center, i.e., ro = 10a, where a is the earth's radius, and we determine allowed
and forbidded regions for 65 = 30°, 60°, and 90°; the last value of 90 places
the source on the equatorial plane.

Typical diagrams showing the allowed and forbidden regions are presented
in Figure 9. 1In the Figure, forbidden regions are indicated by patches and
the open areas represent allowed regions. The patched circle in the center
represents the earth and the position of the point source can be at any of the
four arrows on the great circle whose radius is ten times that of the earth.
All the diagrams are symmetric with respect to the equator, and the three
dimensional allowed (or forbidden) region can be obtained by rotating each
diagram about the vertical axis through the center, namely, the dipole axis.

For very small values of X, (well below 1°, say), that is, when the
initial direction of the ray deviates from the meridian plane only by a small

angle, the ray can reach the earth's vicinity except directly above the poles.
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As 7, increases the two forbidden regions around the axis, one in each
hemisphere, become larger and extend to lower latitudes near the altitude
of the Alfvén velocity maximum. When J{O reaches some critical value,
the tips of the northern and southern forbidden regions touch each other
on the equatorial plane. There is an allowed region between the ionosphere
and the altitude at which the joining of the two forbidden regions takes
place on the equatorial plane, but this inner allowed region is not accessible
to the ray coming from outside.

When ~x5 exceeds the critical value, the earth is completely immersed
in a forbidden region and the outer allowed region is more and more pushed
outward, and finally, as j(o tends to 90° its inner surface approaches some
limiting surface which intersects the large sphere (of radius rgy) at 8 = 8o
and @ = T-8,. When 6, is 90°, the allowed region for X, = 90° degenerates

to a circle of radius r, on the equatorial plane.

o

The critical value of Xy becomes smaller as 8, increases; for 9 = 30°,
60°, and 90°, the critical X, is 3.3°9, 1.4°, and 0.9°, respectively. In
Figure 9 the diagrams for these critical circumstances are included.

For X, = 10°, 309, 60°, and 90° the forbidden regions are indicated
in one diagram for e4ch 6.

We conclude that the earth and its immediate vicinity are remarkably
well protected firom the hydromagnetic rays generated in the outer regions

of the magnetosphere. This feature has been shown by Stegelmann and von

Kenschitzki (1964) with their results fraom numerical ray tracing.
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3.8. Hydromagnetic rays in the distorted magnetosphere: axially asymmetric

case

The magnetosphere is contained in a cavity in the streaming solar plasma
(Cahill and Amazeen, 1963; Ness et al., 1964). A number of workers have
attempted to theoretically determine the shape of the boundary of the mag-
netosphere (for reference, see a review paper by Beard, 1964).

In this Section we only briefly discuss the effect of the distortion of
the magnetosphere on the propagation of hydromagnetic waves.

In the absence of symmetry we have to write down the equations of
motion and solve them by some numerical method.

For the sake of convenience we multiply the Hamiltonian given in Section

3.4 by the factor %. With this Hamiltonian the canonical equations are

r= Vz P,
0 =v2 pe/r2
6 = v2 p¢/(r2 sinze) (48)

Pr= -(1/V 2V/d 1t + (v2/r%) (py? + p 2/sin’e)
Pg= - (L/V) dV/de + (vi/r?) p,2 cos @ / sinde
pg= - (1/V) dV/2¢
These equations are not completely independent. The Hamiltonian of

the system is identically zero, and we have
Pr2 + sz/fz + péz/(r2 sinZ @) = 1/v? (49)

Using (49) one of the variables can be eliminated from the set of
equations (48). But it is found convenient touse (49) as a check in the

numerical ray tracing calculation.
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We define the direction of the tangent to the ray trajectory at a point
P by two angles X and Y] . The angle )X is the same as that defined in the
preceding Section, and q is the angle which the tangent to the projection
of the trajectory onto the meridian plane makes with the radial direction,

namely,

n

sin X (dé/ds) r sin @

cos 7

We denote the initial values of X and q at (ro, 8o, %g) by ;{0 and

-(dr/ds) sec %

No> respectively.

The initial values of the momenta can be written in terms of r,, 64,
65 Xo>s no’ and V(rpg, 9o, éo).

For the deformed geomagnetic field we take the model proposed by Mead
(1964) . For the dipole field we take g? = -0.31 gauss, and for the additional

field due to the deformation we take

g] = -0.2515 /rb3 gauss

4
0.1215 /ry @gauss

a9
1]

where g's are well-known Gauss coefficients in the spherical harmonic expan-
sion of the magnetic field, and where Ty is the distance, measured in earth-
radii, from the earth's center to the boundary of the magnetosphere at the
subsolar point. Here ry is taken to be 10 earth-radii.

A computer program has been developed to integrate the equations of motion

(48) with Ty 855 b5s Xo» and no as the initial conditions. For integration

the Runge-Kutta method was used.
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In this paper, trajectories on the equatorial plane alone are discussed.
Figure 10 shows typical examples of the trajectories in the equatorial
plane. The position of the point source is place at 10 earth-radii regard-
less of the longitude. This assumption is made because the location of the
magnetospheric boundary is not well known on the dark side of the magnetosphere,
and because with a fixed I, We can compare trajectories starting from sources
at different longitudes more directly. Here longitude, &é, is measured east-
ward from the midnight meridian; in Figure 10 the midnight meridian is

towards the left and the longitude increases counterclockwise.

(o}
’

In the lower half of Figure 10, trajectories starting at é, = 0°, 45
135°, and 180°, all with Xo=0 (i.e., rays directed initially towards the
origin) are shown. 1In the upper half, trajectories with their initial posi-
tion at é, = 90° with -xo = 0, 19, 39, 40, 50, 6°, and 7° are drawn.

The effect of the distortion of the magnetosphere on the ray trajectories
can be described by saying that hydromagnetic rays tend to be 'blown' towards
the direction away from the sun. This is because the magnetic field is more
compressed on the sunlit side of the magnetosphere than on its dark side, thus
increasing the Alfvén velocity in the region facing the sun.

However, the results presented in this Section should be interpreted
with caution. Although the distortion of the geomagnetic field is taken inte
account, possible changes in the plasma density distribution associated with
the distortion are not considered’' here. Appreciable asymmetry may be introduced
in the plasma density, but no observational data are available as yet that in-

dicate such an effect.
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The magnetic field configuration on the dark side of the magnetosphere
has also not as yet been established. Since the trajectories are sensitive
to large scale magnetic field patterns, the actual trajectories in the mag-
netosphere may be different from those shown in this paper. Our purpose is
to demonstrate qualitative characteristics of ray trajectories in the mag-
netosphere. However, for the model used in this Section the calculations
are made as accurately as possible within the practical limitations.

It is observed in Figure 10 that if the point source is not in the

meridian containing the sun (i.e., é6_ = 0° or 1800), the ray directed

0
initially towards the origin does not reach the earth. For the ray to
reach the earth it must start with ;{o slightly greater than 0. If X,
becomes too large, the ray is bent back at the region of Alfvén velocity
maximum. This circumstance is shown for éo = 90O in the upper half of
Figure 10, At this bo, rays with J(o = 3.0° and less are ‘blown" towards
the back of the magnetosphere. At J{O between 300o and 3.2° the ray begins
to penetrate into the immediate vicinity of the earth, and this condition
prevails till ,Z% reaches a value a little less than 6.5°. Beyond this
latter angle the ray is again reflected away from the earth at the region
of Alfvén velocity maximum.

In Figure 10 the time in seconds is indicated along the trajectories.
It is of interest to compare the transit time from r, to some altitude near
the earth for the trajectory in the midnight meridian with the corresponding

transit time for the trajectory in the noon meridian. In Figure 10 the

altitude of the point marked 95 seconds in the noon meridian and that of
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the point marked 129 seconds in the midnight meridian are within 45 km
from each other. The mean of the two altitudes is 1,363 km above the
earth's surface. Thus the difference in the transit time from 10 earth-
radii to this altitude is about 34 seconds.

However, as has already been mentioned, caution should be exercised
in applying this result to any actual events that occur in the magnetosphere.

In concluding the discussions of the ray theory the following remarks
are made. The hydromagnetic approximation is based on the condition that
ukgSli. Thus for the most part of the magnetosphere this approximation
is good below 10 c/sec (Figure 4). There is another limitation to the
ray theory, namely, that the wavelength be short compared with the dimension
under consideration. We put this condition in the form W®»V/L, where L is
the typical scale length. 1If we take L to be the smallest value of the
radius of curvature for the ray trajectories, then the minimum frequency
may be set at about 1 c/sec. Thus, roughly speaking, the ray theory is
applicable to propagation of hydromagnetic waves of frequencieé about 1
to 10 c/sec.

A more extensive study of the ray trajectories in the magnetosphere
and their physical implications will be reported later. For instance, the
efficiency of energy transfer from solar winds to the ionosphere via hydro-
magnetic waves is considerably reduced by the limited accessibility of the
hydromagnetic waves to the immediate vicinity of the earth.

A theoretical study of geometrical hydromagnetics based on a classical
hydromagnetic fluid has been made by Bazer and Hurley (1963); their paper

includes comprehensive reference to the literature on the subject.
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4. Conclusions

We reviewed the possible modes of waves in & two-component cold plasma
using the Clemmow-Mullaly-Allis diagram. A systematic method of labeling
the modes was explained.

The modes relevant to propagation of ULF and VLF waves in the regions
of plasma parameter space representing the conditions in the magnetosphere
were reviewed. For frequencies below the ion cyclotron frequency there are
two modes: the fast mode with right-handed circular polarization for propaga-
tion along the magnetic field and with phase velocity dependent on the magnetic
field for propagation across it, and the slow mode with left-handed circular
polarization for progagation along the magnetic field. Waves in the latter
mode do not propagate across the magnetic field. Above the ion cyclotron
frequency, only the fast mode represents propagating wave, and above the
lower hybrid resonance frequency this mode becomes the whistler mode.

Reversal of polarization ( in the electric field) depending upon the
direction of phase propagation with reference to the direction of the magnetic
field was discussed. We concluded that there is no such reversal in polariza-
tion in ULF and VLF waves in the magnetosphere.

The hydromagnetic approximation was examined and its relation to the
more exact treatment was indicated.

In this paper we only discussed propagation of waves in a collisionless
plasma. When the thermal motions of electrons and ions are included, the
waves found in a cold plasma are modified. The modifications are often

only slight, but in a hot plasma new modes are .introduced which have no
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counterpart in a cold plasma. There are two such modes in a relatively low
frequency range. They are ion acoustic waves and electrostatic ion cyclotron
waves. These waves were not discussed in this paper; the reader is referred to
discussions on these waves made, for instance, by Spitzer (1956), Bernstein
(1958) and Stix (1962).

In the latter half of this paper, we changed the line of approach, and

formulated a ray theory. The equations of motion of a ray were derived from

a simple postulate that a ray moves with the group velocity. The action of
the ray was defined in analogy with classical mechanics, and the principle
of least action was proved. It wds shown that the principle of least action
takes the form of the principle of least time when the dispersion relation
is homogeneous in the wave vectorla and the frequency w .

For the case in which the wave-normal surface is spherical, a ray theory
was formulated in Hamiltonian form. 1In the axially symmetric case the generalized
momentum conjugate to the azimuthal coordinate becomes a constant of motion.
Using this relation, allowed and forbidden regions were defined for a hydro-
magnetic ray in the magnetosphere with the magnetic field approximated by that
of .a dipole. 1t was shown that a ray originating from the magnetospheric
boundary can reach the ionospheré only if the deviation of the {initifal direction
of the ray from the meridian plane is small.

When the distortion of the geomagnetic field due to solar wind is taken
into account, the ray trajectories in the magnetosphere are appreciably altered
from those in a dipole field.

In spite of the limitations in its application the hydromagnetic ray
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theory for the magnetosphere should provide a guide towards a more complete

understanding of propagation of hydromagnetic waves in the magnetosphere.
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Figures

The CMA diagram for a two-component cold plasma, showing the
topological characteristics of the wave-normal surfaces.

The electron density distribution in the model magnetosphere
used in this paper.

The electron cyclotron frequency and the electron plasma
frequency as functions of distance from the earth's center.
The CMA diagram for ULF and VLF waves in the model magnetosphere.
Areas in the plasma parameter plane in which the polarization
reversal can occur at O satisfying (14).

Illustrating the solutions to RL + PS - 252 = o.

The modes in which polarization reversal occurs at 0
satisfying (14).

Illustrating the angle X .

Allowed and fcrbidden regions for a hydromagnetic ray in the
magnetosphere with a dipole field.

Illustrating ray trajectories in the equatorial plane in the

distorted magnetosphere.
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Figure 10.




